
Our contributions [4]

• Naïve bandit reduction to statistical 
estimation ignores structure of problem

• Can overcome via correlating our sampling
• Sample rows of D, 𝐷",$ = 𝑑 𝑥", 𝑥$

• Need to prove (𝜃" < (𝜃+
• Control            instead of (𝜃",(𝜃+
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Problem Formulation

• Generalization of median
• Unlike mean, medoid is inside dataset
• Special instance of AMO framework, also works for k-NN

Computation à Estimation

• Estimate 𝜃" via random sampling

• RAND: estimate each 𝜃" to same degree of accuracy

• Medoid Bandit (Med-dit): sample adaptively (UCB) [1]
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Summary

• Convert computational problem to 
statistical estimation

• Fast randomized algorithms
• Incorporating structure of the 

computational problem in this reduction 
can yield massive gains

E{d(xi, xJ)} = ✓i J ⇠ Unif([n])

✓̂i =
1

|Ji|
X

j2Ji

d(xi, xj)

Theorem Statement

• Assumption: 𝑑 𝑥+, 𝑥, − 𝑑(𝑥", 𝑥,) is 𝜎𝜌"–subgaussian
• Theorem: corrSH [4] identifies the medoid with 

probability at least 1-𝛿 after computing

distance evaluations
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Simulation Results

• Figures arranged top to bottom, left to right, following the table

Dataset, Metric n, d
RNA-Seq 20k, ℓ+ 20k, 28k

RNA-Seq 100k, ℓ+ 109k, 28k
Netflix 20k, cos 20k, 18k

Netflix 100k, cos 100k, 18k

MNIST Zeros, ℓ4 6424, 784

Paper

Code

Another Application: k-NN

• Works for any ℓ5 (separable) distance
• Randomly rotate data for better subgaussian constant
• 𝑂(𝑛4 log4 𝑛𝑑) time under distributional assumption
• 100x gain in theory on ImageNet, 25x wall clock speedup
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Bandit Algorithm
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