
Automated Code Design for Real-valued Channels

Tavor Baharav
tavorb

Jeffrey Barratt
jbarratt

Shane Barratt
sbarratt

Original Research / Art Project

1 Introduction

Error Correcting Codes (ECCs) form a set of techniques for robustly sending data over unre-
liable channels. Classical ECCs consider channels that map elements of Cartesian products
of finite fields to another (or the same) element in that field. Robustness can be measured by
how many changes or erasures the code can tolerate in the worst case, or by the probability
of error in Shannon’s model, when errors are assumed to be random. There are many notions
of optimality, governed by possibility and impossibility results based on the rates of codes
versus their distance.

In this paper we instead consider real-valued channels, i.e., channels that map between
real vector spaces. In some applications, e.g., communication and storage, channels that
have this form more naturally model the actual underlying communication channel. As
the number and diversity of mediums over which we perform communication and storage
increase, it will become more and more important to develop specialized codes for such
mediums.

We propose an automated solution for developing such codes, given a model of the chan-
nel, which can be constructed by system identification. We demonstrate the utility of our
method by applying it to several well-known channels, and showing that it can find reason-
ably good codes. Our report also includes many compelling visualizations of the codes that
we discover; it turned out to be an art project as well!

2 Related work

Coding theory, like most other fields, has felt the impact of machine learning. Work is
currently being done on deep learning-based approaches to communication (see [KJR+18]
for a survey), so it is interesting to compare our simpler optimization methods to the more
complicated schemes based on deep learning. For another paper regarding the use of deep
learning in coding theory, we note that some work has also been done for joint source-channel
coding, which appears to perform very well at shorter block lengths [BKG18]. Some channel
coding work similar to ours has recently been studied in [OH17].

1

DeepSig, a company trying to apply machine learning to signal processing, has studied
many aspects similar to the results seen in this paper. They have studied multiple-input and
multiple-output (MIMO) processing using deep learning in [OEC17]. Also, O’Shea applied
deep learning to radio communication which is simply another type of channel in [ORC17].
Further results in the application of machine learning to signal processing from this company
will likely continue to arise as time progresses.

3 Design problem

Encoder/decoder design problem. We consider the problem of designing encoders and
decoders for sending messages over noisy real-valued vector channels. That is, given a
message x ∈ {1, . . . , k} that comes from a distribution p(x), we encode the message as
the codeword c = E(x), where

E : {1, . . . , k} → {c | ‖c‖2 ≤ P}

is a (norm-limited) encoding or embedding function and P > 0 is the maximum allowed
norm. The codeword c is then sent over a random channel C : Rn ×W → Rn (assumed to
be differentiable in its first argument), and the decoder receives c̃ = C(c, ω), where ω ∈ W
is random and comes from the distribution p(ω). The corrupted codeword is decoded as
x̂ = D(c̃), where D : Rn → {1, . . . , k} is a decoding function. We assume that we know the
form of C, know the distribution of p(x), and can sample from p(ω).

The goal is to minimize the probability of error by optimizing the encoding and decoding
functions, or to solve the optimization problem

minimize
E,D

E
x,ω

1[D(C(E(x), ω)) 6= x]. (1)

We will see that this description encompasses many interesting error correction design prob-
lems over real-valued channels, for different forms of C. This could also be a weighted loss,
e.g., if the binary string 00 is decoded as 01 it results in lower loss than it if had been decoded
as 11. In this paper we consider non-weighted losses.

Generality. The problem that we have described encompasses many types of channels. In
analog communication, the “channel” C could include the signal path through the hardware
at the transmitter and the receiver (which could realistically be nonlinear) and the commu-
nication channel itself. It also includes, e.g., complex channels, since a complex channel over
Cn can be converted to a channel over R2n, and channels defined in the frequency domain.

Difficulty. This optimization problem is evidently difficult, since the optimization variables
are functions and the objective is nonlinear and nonconvex. Therefore, as a practical matter,
we will only be able to solve this problem approximately using a heuristic.

2

Proposed solution method. We propose to represent E as a parameterized composition
of nonlinear functions, replace the indicator function in the objective with a smooth loss
function, and optimize the objective using the projected decoding method. That is, we let
E(x = i) = (θE)i (the ith column of θE) for some θE ∈ Rn×k. We also replace the decoding
function with DθD : Rn → ∆k, where ∆k is the K-dimensional probability simplex. We relax
the nonconvex 0-1 loss with a convex relaxation, in particular the cross entropy loss, which
has the form

l(x̂, x = i) = − log x̂i.

We assume that the outputs of D and E are differentiable in θD and θE respectively. We
optimize the composite parameter θ = (θD, θE). This results in the finite-dimensional opti-
mization problem

minimize
θ

1

NM

N∑
i=1

M∑
j=1

p(x(i))p(ω(i)) l(DθD(C(EθE(x(i)), ω(j))), x(i)), (2)

where x(1), . . . , x(N) ∼ p(x) and ω(1), . . . , ω(M) ∼ p(ω). We can (approximately) solve this
problem using projected descent, since we can compute the gradient of the objective with
respect to θD and θE by the chain rule. After a gradient step, we project each column of θD
onto {c | ‖c‖2 ≤ P}. We will solve the problem multiple times with random initializations
and select the best final θ in terms of the true objective. The quality of the θ that we find
will be measured by the its performance in terms of the objective in (1), and proves that the
performance level is achievable (since we have restricted the feasible set of (1)).

Implementation details. In our experiments, the decoder has the form

D(c̃) = φ(A3 max(A2 max(A1c̃+ b1, 0) + b2, 0) + b3),

where A1 ∈ R128×n, b1 ∈ R128, A2 ∈ R128×128, b2 ∈ R128, A1 ∈ Rk×128, b1 ∈ Rk and the
function φ : Rk → ∆k has the form

φ(x)i =
exp(xi)∑k
i=1 exp(xj)

.

The parameters of the decoder are θD = (A1, A2, A3, b1, b2, b3).
We implemented the ideas described in this paper in the automatic differentiation frame-

work PyTorch [PGC+17]. Our implementation is available as an attachment to the submis-
sion of this paper. We ran the experiments on a GTI Nvidia 1080 TI GPU using 32-bit
floating numbers (floats), which led to significant speed-ups (20 times or more) as opposed
to the CPU. The API exposes a method

get_encoder_decoder(k, n, P, channel),

which takes the number of messages, the number of dimensions in the channel, the maximum
power constraint, and the channel model. The channel model is a function that takes in a

3

batch of codewords C ∈ RN×n and outputs a sample of the corrupted codewords C̃ ∈ RN×n.
For example, an AWGN channel can easily be materialized with the code snippet:

channel = lambda c: c + 0.2 * torch.randn(*c.shape).

4 Noise models

The first channel model that we consider is the additive Gaussian channel, which has the
form

C(c, ω) = c+ ω,

where ω ∼ N (0,Σ), and Σ � 0 is the covariance matrix. When Σ = σ2I for some σ > 0, the
channel is referred to as an additive white Gaussian noise (AWGN) channel. It is relatively
trivial to derive good encoder/decoder pairs for a Gaussian channel. However, applying our
procedure to these channels when n = 2 and visualizing the results serves as a good sanity
check of the procedure.

AWGN channel. We begin with a concrete example of the procedure applied to an AWGN
channel; the resulting codewords and decoding regions are displayed in figure 3a. The de-
coding regions roughly correspond to the Voronoi diagram defined by the points under the
`2-norm, which is what an optimal decoder would have done. The encoder looks roughly like
a quadrature amplitude modulation (QAM) constellation, as expected.

Error probability versus rate. In Fig. 1 we plot the achieved error probability versus
number of messages k for a fixed channel AWGN. We see that even in a small case, the
error probability increases when the number of messages on the channel k increases past
the theoretical Shannon capacity of the channel of 23.329 ≈ 10.05. This shows that the
performance of our implementation is able to almost reach the Shannon capacity of the
channel.

Colored Gaussian channel. Next we apply our procedure to a channel with colored
Gaussian noise, i.e., where Σ is not diagonal. We use

Σ =

[
0.01 −0.0025
−0.0025 0.01

]
.

The resulting codewords and decoding regions are displayed in figure 3b. The decoding
regions roughly correspond to a Voronoi diagram under the Mahalanobis distance with Σ.

We can calculate the capacity of this channel as in [CT12]. We have that

Σ =

[
0.01 −0.0025
−0.0025 0.01

]
=

1√
2

[
−1 1
1 1

]
.01

[
1.25 0

0 .75

]
1√
2

[
−1 1
1 1

]
= QΛQ>.

4

0 5 10 15 20 25 30 35 40
k

0.0

0.1

0.2

0.3

0.4

pr
ob

ab
ilit

y
of

 e
rro

r

Figure 1: Error probability versus k for a fixed channel AWGN. Here n = 2, σ = 0.2, P = 1
(max power of 1), and p(x) is uniform. The Shannon capacity of this model in the limit is
about 10 and an increase in error is seen past that point.

With this in hand, we define A , Q>KxQ, where we know that the output has a power
constraint and so entropy will be maximized for normal output, which implies normal input.
Hence we let our input be normal: N (0, Kx).

Aii = (ν − λi)+,
where ν is chosen such that

∑n
i=1Aii = nP . Since our power constraint for this problem was

P = 1,

2 =
∑
i

(ν − λi)+ = (ν − .0125)+ + (ν − .0075)+ = 2ν − .02⇒ ν = 1.01.

Since A11 = .9975, A22 = 1.0025, this gives us a solution for Kx

Kx = QAQ> =
1√
2

[
−1 1
1 1

] [
.9975 0

0 1.0025

]
1√
2

[
−1 1
1 1

]
.

where

Kx + Σ = Q

(
A+ .01

[
1.25 0

0 .75

])
Q> = Q

[
1.01 0

0 1.01

]
Q> =

[
1.01 0

0 1.01

]
.

Hence the output is normal: N (0, 1.01I2), and has entropy

1

2
log2 (|2πe · (1.01I2)|) = log2 (2.02πe) ≈ 4.10855.

This means that we can reliably transmit ≈ 17.25 messages (note this only holds in an
asymptotic sense, and is just for interpretability).

5

Multiplicative Rayleigh channel. A multiplicative Rayleigh channel has the form

C(c, ω) = ω1c+ ω2,

where ω1 comes from a Rayleigh distribution and ω2 ∼ N (0, σ2I). Figure 3c shows an
example of a learned encoder and decoder. This channel simulates possible errors in a fiber
optic network. We see the codewords taking a “wheel and spoke” format because they are
each scaled by a positive real number, drawing them closer or further away from the center
in the noisy channel. The center is also occupied as the codeword [0, 0] does not get scaled by
ω1 and it is unlikely that ω1 is close to 0 for other codewords under the Rayleigh distribution.

Sparse errors. Our framework naturally extends to additive channels with non-Gaussian
errors. For example, the channel could have sparse errors; one model of this is

C(c, ω) = c+ ω, ωi ∼ Ber(p)N (0, σ2).

That is, with some probability p in each dimension, a normally-distributed error is added to
c. Figure 3d shows an example of a learned encoder and decoder, which is quite nonintuitive.
Reading tea leaves, we can conjecture that these decoding boundaries are due to the sparsity
of the noise: it is more likely that the noise is only impacting the transmitted codeword in 1
dimension, and so the decoding region extends further along the axes than along a diagonal.
In order to facilitate this, the points are staggered along the x and y axes.

Syndrome Decoding. This case of sparse errors traditionally leads to syndrome decod-
ing. This can be viewed as a compressed sensing problem on the syndrome of the received
codeword, where denoting H as the parity check matrix of our code, we have that

Hy = H(x+ e) = He,

If we assume that e is a sparse vector, as in the above scenario, then this is exactly the
compressed sensing problem we are used to, as H ∈ Rn−k×n is an under determined system.
If we wish to solve for the sparsest solution to this equation, we are left with the problem of

min
ẽ∈Rn
‖ẽ‖0 subject to Hẽ = Hy.

This problem is unfortunately nonconvex due to the ‖·‖0 objective. However, if we are given
that the matrix H satisfies a restricted isometry property (RIP) for an isometry constant
δ2s <

√
2− 1, then as shown in [Can08], we can obtain the exact solution by instead solving

a convex relaxation of this problem

min
ẽ∈Rn
‖ẽ‖1 subject to Hẽ = Hy,

under the assumption that e is s-sparse. This specific requirement can be thought of as the
condition that for all subsets of at most 2s columns of H, the columns are nearly orthogonal
[CRT06]. Formally δs is defined as the maximum δs which satisfies the below constraint:

(1− δs)‖x‖22 ≤ ‖Hx‖22 ≤ (1 + δs)‖|x‖22 ∀s− sparse x,

6

0 1 2 3 4
0

500

1000

1500

2000

2500 cs_mean
learned_mean
cs
learned

Figure 2: A histogram of mean squared error (MSE) for CS vs. learned encoder / decoder.
In this example we use C = Ber(.2) ∗N(0, 1), n = 20, and k = 10. The Y-axis is frequency
out of 4096 test samples.

and this requirement is so that we are able to tell the difference between two possible error
vectors e1, e2 which are both s-sparse (i.e. e1− e2, a 2s-sparse vector, does not go unnoticed
via observation through H).

We simulate this numerically by generating a random parity check matrix H ∈ Rn−k×n,
where each entry of H is drawn iid from N(0, 1). We then construct our generator matrix
by choosing columns so that they span the nullspace of H, i.e. that G ∈ Rnxk and HG = 0.
We know that if our error is s-sparse, the singleton bound states that we need at least
n − k ≥ 2s + 1. A more detailed asymptotic analysis yields that for H Gaussian we need
n − k = O(s log(n

s
)) [CRT06]. Working for finite n and k, we decided to just slightly over

provision in terms of n− k, as this log(n
s
) is an asymptotic result.

In figure 2 we see that this `1 relaxation for compressed sensing works very well, and that
over half the time it reconstructs the signal almost perfectly. However since our n was finite
and our channel was Ber(p)N(0, 1), we have that our vectors had sparsity according to a
binomial distribution, which means that sometimes n− k < 2s+ 1 (i.e. there is no hope of
exact recovery). In these cases, we see that CS yields a very high error, having a very long
tail with respect to squared error.

On the other hand, we have a learned linear encoder and parameterized nonlinear decoder.
Through our work we realized that we needed to constrain the norm of our learned generator
matrix, as otherwise this problem becomes simple: under this sparse Gaussian noise, 2G will
perform better than G as the range is more spread out over Rn and it is relatively easier to

7

overcome this Gaussian noise. With this power constraint on the generator matrix, we have
that the learned decoder is conservative; it will never decode the message correctly, but will
always have fairly low error, as it was trained to minimize MSE loss as a surrogate for the
0− 1 loss. At the end, the MSE for Compressed Sensing is lower than that for this learned
method, as we expected; there is a large body of theory on compressed sensing, and it makes
sense that it would perform better than this arbitrary learned encoder.

5 Conclusion and future work

One of the main benefits of learning the encoder/decoder in the case of communications
is that (in theory) it can adapt to the channel at hand and outperform hand-constructed
codes. However, it is unreasonable to assume full knowledge of the channel. When the
channel is not known, but we can send signals through it, the techniques described in this
paper can still be used by replacing the gradient descent procedure with (guided) random
search [Mat65]. This has immediate practical implications when a transmitter and receiver
have a low-quality link, but are trying to bootstrap it to create a fast and reliable link.
They would use the low-quality link to transmit information while learning and performing
(guided) random search to learn an encoder/decoder pair. This learning paradigm may yield
interesting results, as the encoder and decoder can easily spend time locally approximating
gradients with respect to sent data, but communicating ground truths and results over the
low-quality link are prohibitively expensive. So far, learned models as in [KJR+18, BKG18]
are only really promising for short block lengths. It would be interesting to see if our current
learning scheme or this gradient free learning scheme would be able to perform well at longer
block lengths.

References

[BKG18] E. Bourtsoulatze, D. Kurka, and D. Gunduz. Deep joint source-channel coding
for wireless image transmission. arXiv preprint arXiv:1809.01733, 2018.

[Can08] E. Candes. The restricted isometry property and its implications for compressed
sensing. Comptes rendus mathematique, 346(9-10):589–592, 2008.

[CRT06] E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and
inaccurate measurements. Communications on Pure and Applied Mathematics:
A Journal Issued by the Courant Institute of Mathematical Sciences, 59(8):1207–
1223, 2006.

[CT12] T. Cover and J. Thomas. Elements of information theory. John Wiley & Sons,
2012.

[KJR+18] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath. Communication
algorithms via deep learning. arXiv preprint arXiv:1805.09317, 2018.

8

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(a) AWGN.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(b) Colored Gaussian.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(c) Multiplicative Rayleigh.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(d) Additive sparse Gaussian.

Figure 3: Codewords and decoding regions for various noise patterns.

9

[Mat65] J. Matyas. Random optimization. Automation and Remote control, 26(2):246–
253, 1965.

[OEC17] Timothy J. O’Shea, Tugba Erpek, and T. Charles Clancy. Deep learning based
MIMO communications. CoRR, abs/1707.07980, 2017.

[OH17] Timothy OShea and Jakob Hoydis. An introduction to deep learning for the
physical layer. IEEE Transactions on Cognitive Communications and Networking,
3(4):563–575, 2017.

[ORC17] Timothy J. O’Shea, Tamoghna Roy, and T. Charles Clancy. Over the air deep
learning based radio signal classification. CoRR, abs/1712.04578, 2017.

[PGC+17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In Neural
Information Processing Systems, 2017.

10

	Introduction
	Related work
	Design problem
	Noise models
	Conclusion and future work

