

# Ultra Fast Medoid Identification via Correlated Sequential Halving

Tavor Z. Baharav, David N. Tse {tavorb, dntse}@stanford.edu

select a set  $\mathcal{J}_r$  of  $t_r$  reference points uniformly at random

 $t_r = \left\{ 1 \lor \left| \frac{T}{|S_r| \lceil \log_2 n \rceil} \right| \right\} \land n$ 

Let  $S_{r+1}$  be the set of  $\lceil |S_r|/2 \rceil$  arms in  $S_r$  with the smallest  $\hat{\theta}_i^{(r)}$ 

For each  $i \in S_r$  set  $\hat{\theta}_i^{(r)} = \frac{1}{t_r} \sum_{j \in \mathcal{J}_r} d(x_i, x_j)$  if  $t_r = n$  then

Output arm in  $S_r$  with the smallest  $\hat{\theta}_i^{(r)}$ 



### Problem Formulation

$$x_1, \dots, x_n \in \mathbb{R}^d$$
  $i^* = \arg\min_{i \in [n]} \theta_i$   $\theta_i \triangleq \frac{1}{n} \sum_{j=1}^n d(x_i, x_j)$ 

- High dimensional generalization of median
- Unlike mean, medoid is inside dataset

## Computation $\rightarrow$ Estimation: Bandits!

- Estimate  $\theta_i$  via random sampling  $\mathbb{E}\{d(x_i, x_J)\} = \theta_i \qquad J \sim \text{Unif}([n])$
- RAND: estimate each  $\theta_i$  to same degree of accuracy  $\hat{\theta}_i = \frac{1}{|\mathcal{J}_i|} \sum_{i \in \mathcal{I}} d(x_i, x_j)$
- Medoid Bandit (Med-dit): sample adaptively (UCB) [1]
  - Can we do better than UCB?

#### Intuition

UCB ignores structure of problem: consider dist matrix D







- Can overcome via *correlating* our sampling
  - Sample rows of D,  $D_{i,j} = d(x_i, x_i)$
- Need to prove  $\widehat{\theta_i} < \widehat{\theta_1}$ 
  - Control  $\widehat{\theta_i}$ - $\widehat{\theta_1}$  instead of  $\widehat{\theta_i}$ ,  $\widehat{\theta_1}$





Simulation Results Dataset, Metric RNA-Seq 20k,  $\ell_1$ Netflix 100k, cos

else

11: **end for** 

end if

12: **return** arm in  $S_{\lceil \log_2 n \rceil}$ 

**Input:** Budget T

2: initialize  $S_0 \leftarrow [n]$ 

3: **for** r=0 **to**  $\lceil \log_2 n \rceil - 1$  **do** 

without replacement from [n] where



Figures arranged top to bottom, left to right, following the table

| dataset, metric           | $\mid n, d \mid$ |         | corrSH | Med-dit    | Rand         | Exact Comp. |
|---------------------------|------------------|---------|--------|------------|--------------|-------------|
| RNA-Seq 20k, $\ell_1$     | 20k, 28k         | time    | 10.9   | 246        | 2131         | 40574       |
|                           |                  | # pulls | 2.43   | 121 (2.1%) | 1000 (.1%)   | 20000       |
| RNA-Seq 100k, $\ell_1$    | 109k, 28k        | time    | 64.2   | 5819       | 10462        | -           |
|                           |                  | # pulls | 2.10   | 420        | 1000 (.5%)   | 100000      |
| Netflix 20k, cosine dist  | 20k, 18k         | time    | 6.82   | 593        | 70.2         | 139         |
|                           |                  | # pulls | 15.0   | 85.8       | 1000 (.6%)   | 20000       |
| Netflix 100k, cosine dist | 100k, 18k        | time    | 53.4   | 6495       | 959          | -           |
|                           |                  | # pulls | 18.5   | 90.5 (6%)  | 1000 (3.6%)  | 100000      |
| MNIST Zeros, $\ell_2$     | 6424, 784        | time    | 1.46   | 151        | 65.7         | 22.8        |
|                           |                  | # pulls | 47.9   | 91.2 (.1%) | 1000 (65.2%) | 6424        |

#### Theorem Statement

- **Notation:**  $d(x_1, x_I) d(x_i, x_I)$  is  $\sigma \rho_i$ -subgaussian
- **Theorem:** corrSH identifies the medoid within T distance computations with probability at least
- $1 3\log n \exp\left(-\frac{T}{16\sigma^2\log n} \cdot \min_{i \geq \frac{T}{n\log n}} \left| \frac{\Delta_{(i)}^2}{i\rho_{(i)}^2} \right| \right)$



## Summary

--- exact

- Convert computational problem to statistical estimation
- Fast randomized algorithm for data science primitive
- Incorporating structure of the computational problem in this reduction can yield massive gains
- Similar approach can work for k-NN



#### References

- [1] V. Bagaria, G. Kamath, V. Ntranos, M. Zhang, and D. Tse, "Almost-linear time via multi-armed bandits," in Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, pp. 500–509, 2018.
- [2] V. Bagaria, G. M. Kamath, and D. N. Tse, "Adaptive monte-carlo optimization," arXiv preprint arXiv:1805.08321, 2018.
- [3] Z. Karnin, T. Koren, and O. Somekh, "Almost optimal exploration in multi-armed bandits," in International Conference on Machine Learning, pp. 1238–1246, 2013.
- [4] Baharav, Tavor Z., and David N. Tse. "Ultra Fast Medoid Identification via Correlated Sequential Halving." NeurIPS 2019.